The group of absolutely continuous homeomorphisms of [0, 1] is topologically 2-generated

Dakota Thor Ihli

McGill Descriptive Dynamics and Combinatorics Seminar Aug 6 2021

Topological generating sets

Topological generating sets

Definition

Let G be a Polish group, and let $1 \leq n \leq \aleph_0$.

Let G be a Polish group, and let $1 \leq n \leq \aleph_0$.

$$\Omega_n := \left\{ (g_i)_{i < n} \in G^n : \langle g_i : i < n \rangle \text{ is dense in } G \right\}.$$

Let G be a Polish group, and let $1 \leq n \leq \aleph_0$.

$$\Omega_n := \left\{ (g_i)_{i < n} \in G^n : \langle g_i : i < n \rangle \text{ is dense in } G \right\}.$$

We say G is **topologically** *n*-generated (resp. generically *n*-generated) if Ω_n is non-empty (resp. comeagre).

Let G be a Polish group, and let $1 \leq n \leq \aleph_0$.

 $\Omega_n := \left\{ (g_i)_{i < n} \in G^n : \langle g_i : i < n \rangle \text{ is dense in } G \right\}.$

We say G is **topologically** *n*-generated (resp. generically *n*-generated) if Ω_n is non-empty (resp. comeagre).

Definition

The **topological rank** (resp. **generic rank**) of G, denoted by trk (G) (resp. grk (G)), is the least n for which G is topologically n-generated (resp. generically n-generated).

Topological generating sets - remarks

Topological generating sets - remarks

• Every Polish group is generically ℵ₀-generated. (By separability.)

- Every Polish group is generically ℵ₀-generated. (By separability.)
- Ω_n is a G_δ set in G^n . Thus, G is generically *n*-generated iff Ω_n is dense in G^n .

- Every Polish group is generically ℵ₀-generated. (By separability.)
- Ω_n is a G_δ set in G^n . Thus, G is generically *n*-generated iff Ω_n is dense in G^n .
- If $\phi : G_1 \to G_2$ is a continuous group homomorphism with dense image, then trk $(G_2) \leq \text{trk} (G_1)$.

Example

Topologically 1-generated groups are also called **monothetic**. $(\mathbb{R}/\mathbb{Z})^n$ has this property for all *n*, as does the group $L_0(\mathbb{T})$.

Example

Topologically 1-generated groups are also called **monothetic**. $(\mathbb{R}/\mathbb{Z})^n$ has this property for all *n*, as does the group $L_0(\mathbb{T})$. These groups are also **generically monothetic**, i.e. generically 1-generated.

Example

Topologically 1-generated groups are also called **monothetic**. $(\mathbb{R}/\mathbb{Z})^n$ has this property for all *n*, as does the group $L_0(\mathbb{T})$. These groups are also **generically monothetic**, i.e. generically 1-generated.

Example

 \mathbb{R}^n is generically (n+1)-generated.

Example

Topologically 1-generated groups are also called **monothetic**. $(\mathbb{R}/\mathbb{Z})^n$ has this property for all *n*, as does the group $L_0(\mathbb{T})$. These groups are also **generically monothetic**, i.e. generically 1-generated.

Example

 \mathbb{R}^n is generically (n+1)-generated.

Example (Kechris-Rosendal, 2007)

 S_∞ is topologically 2-generated, as are many other automorphism groups of countable structures.

Example

Topologically 1-generated groups are also called **monothetic**. $(\mathbb{R}/\mathbb{Z})^n$ has this property for all *n*, as does the group $L_0(\mathbb{T})$. These groups are also **generically monothetic**, i.e. generically 1-generated.

Example

 \mathbb{R}^n is generically (n+1)-generated.

Example (Kechris-Rosendal, 2007)

 S_{∞} is topologically 2-generated, as are many other automorphism groups of countable structures. However, a non-archimedean group can never be generically *n*-generated for any finite *n*.

Example

 $H_{+}(I)$ is topologically 2-generated — for example, it famously contains Thompson's group F as a dense subgroup.

Example

 $H_+(I)$ is topologically 2-generated — for example, it famously contains Thompson's group F as a dense subgroup.

Example (Akhmedov–Cohen, 2019)

 $H_{+}(I)$ is generically 2-generated.

Example

 $H_+(I)$ is topologically 2-generated — for example, it famously contains Thompson's group F as a dense subgroup.

Example (Akhmedov–Cohen, 2019)

 $H_{+}(I)$ is generically 2-generated.

Example (Akhmedov–Cohen, 2019)

 $D_{+}^{1}(I)$ is topologically 10-generated.

Example

 $H_+(I)$ is topologically 2-generated — for example, it famously contains Thompson's group F as a dense subgroup.

Example (Akhmedov–Cohen, 2019)

 $H_{+}(I)$ is generically 2-generated.

Example (Akhmedov–Cohen, 2019)

 $D^1_+(I)$ is topologically 10-generated. (The actual value of trk (D^1_+) is likely lower, but it must be at least 3.)

All measure-theoretic notions are taken with respect to the usual Lebesgue measure λ .

All measure-theoretic notions are taken with respect to the usual Lebesgue measure λ . Recall the following from a first course in measure theory:

Definition

All measure-theoretic notions are taken with respect to the usual Lebesgue measure λ . Recall the following from a first course in measure theory:

Definition

A function $f: I \to \mathbb{R}$ is **absolutely continuous** if for every $\epsilon > 0$, there is a $\delta > 0$ such that for every finite, pairwise disjoint collection $((a_i, b_i))_{i < n}$ of open intervals in I, we have

$$\sum_{i < n} b_i - a_i < \delta \implies \sum_{i < n} |f(b_i) - f(a_i)| < \epsilon.$$

All measure-theoretic notions are taken with respect to the usual Lebesgue measure λ . Recall the following from a first course in measure theory:

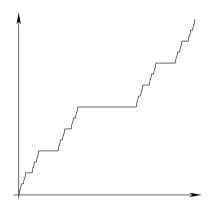
Definition

A function $f: I \to \mathbb{R}$ is **absolutely continuous** if for every $\epsilon > 0$, there is a $\delta > 0$ such that for every finite, pairwise disjoint collection $((a_i, b_i))_{i < n}$ of open intervals in I, we have

$$\sum_{i < n} b_i - a_i < \delta \implies \sum_{i < n} |f(b_i) - f(a_i)| < \epsilon.$$

Every Lipschitz continuous function is absolutely continuous, and every absolutely continuous function has bounded variation.

Figure: The Cantor staircase is the canonical example of a non-abs cts function.



Absolute continuity

Theorem (Fundamental Theorem of Calculus for abs cts functions)

Theorem (Fundamental Theorem of Calculus for abs cts functions)

For a function $f : I \to \mathbb{R}$, the following are equivalent:

(i) f is absolutely continuous;

Theorem (Fundamental Theorem of Calculus for abs cts functions)

For a function $f : I \rightarrow \mathbb{R}$, the following are equivalent:

(i) f is absolutely continuous;

(ii) f is differentiable almost everywhere, $f' \in L_1$, and we have $f(x) = f(0) + \int_0^x f'(t) dt$ for all $x \in I$;

Theorem (Fundamental Theorem of Calculus for abs cts functions)

For a function $f : I \to \mathbb{R}$, the following are equivalent:

- (i) f is absolutely continuous;
- (ii) f is differentiable almost everywhere, $f' \in L_1$, and we have $f(x) = f(0) + \int_0^x f'(t) dt$ for all $x \in I$;
- (iii) There exists a map $g \in L_1$ such that $f(x) = f(0) + \int_0^x g(t) dt$ for all $x \in I$.

Absolutely continuous homeomorphisms

The group H_{+}^{AC} is the subgroup of H_{+} given by:

 $H_+^{AC} := \left\{ f \in H_+ : f \text{ and } f^{-1} \text{ are absolutely continuous} \right\}.$

The group H_{+}^{AC} is the subgroup of H_{+} given by:

$$H_+^{AC} := \left\{ f \in H_+ : f \text{ and } f^{-1} \text{ are absolutely continuous} \right\}.$$

Equip H_+^{AC} with the metric $d_{AC}(f,g) := \|f' - g'\|_1$. Thus, the map $H_+^{AC} \ni f \mapsto f' \in L_1$ is an isometry.

The group H_{+}^{AC} is the subgroup of H_{+} given by:

$$H_+^{AC} := \left\{ f \in H_+ : f \text{ and } f^{-1} \text{ are absolutely continuous} \right\}.$$

Equip H_+^{AC} with the metric $d_{AC}(f,g) := \|f' - g'\|_1$. Thus, the map $H_+^{AC} \ni f \mapsto f' \in L_1$ is an isometry.

Theorem (Solecki, 1995)

The metric d_{AC} induces a Polish topology on H_+^{AC} , which is finer than the one inherited from H_+ .

Aside: subgroups of H_+

Theorem (Akhmedov–Cohen, 2019)

 $H_{+}(I)$ is generically 2-generated.

Theorem (Akhmedov-Cohen, 2019)

 $H_{+}(I)$ is generically 2-generated.

Suffices to show Ω_2 is dense. Fix $f, g \in H_+$, and $\epsilon > 0$. We will build $\tilde{f}, \tilde{g} \in H_+$ such that $d(f, \tilde{f}) < \epsilon$, $d(g, \tilde{g}) < \epsilon$, and $\Gamma := \langle \tilde{f}, \tilde{g} \rangle$ is dense in H_+ .

Theorem (Akhmedov-Cohen, 2019)

$H_{+}(I)$ is generically 2-generated.

Suffices to show Ω_2 is dense. Fix $f, g \in H_+$, and $\epsilon > 0$. We will build $\tilde{f}, \tilde{g} \in H_+$ such that $d(f, \tilde{f}) < \epsilon$, $d(g, \tilde{g}) < \epsilon$, and $\Gamma := \langle \tilde{f}, \tilde{g} \rangle$ is dense in H_+ . The set $\{(f,g) : \operatorname{Fix}(f) \cap \operatorname{Fix}(g) = \{0,1\}\}$ is dense, so without loss of generality, we assume f and g do not share any fixed points in (0, 1).

Sketch of the construction of \tilde{f} and \tilde{g} :

• Fix $\alpha > 0$ small

- Fix $\alpha > 0$ small
- Let \tilde{g} have the following properties:

- Fix $\alpha > 0$ small
- Let \tilde{g} have the following properties:
 - \widetilde{g} agrees with g on $[\alpha,1]$
 - There is $y_0 \in (0, \alpha)$ such that $\tilde{g}(y_0) = y_0$ and $\tilde{g}(x) > x$ for all $x \in (0, y_0)$.

- Fix $\alpha > 0$ small
- Let \tilde{g} have the following properties:
 - \widetilde{g} agrees with g on $[\alpha,1]$
 - There is $y_0 \in (0, \alpha)$ such that $\tilde{g}(y_0) = y_0$ and $\tilde{g}(x) > x$ for all $x \in (0, y_0)$.
- Fix an arbitrary $x_0 \in (0, y_0)$, and let $x_n := \tilde{g}^{-n}(x_0)$.

- Fix $\alpha > 0$ small
- Let \tilde{g} have the following properties:
 - \widetilde{g} agrees with g on $[\alpha,1]$
 - There is $y_0 \in (0, \alpha)$ such that $\tilde{g}(y_0) = y_0$ and $\tilde{g}(x) > x$ for all $x \in (0, y_0)$.
- Fix an arbitrary $x_0 \in (0, y_0)$, and let $x_n := \tilde{g}^{-n}(x_0)$.
- Fix elements φ₀, φ₁ ∈ H₊ ([x₁, x₀]) that generate a dense subgroup of H₊ ([x₁, x₀]).

- Fix $\alpha > 0$ small
- Let \tilde{g} have the following properties:
 - \widetilde{g} agrees with g on $[\alpha,1]$
 - There is $y_0 \in (0, \alpha)$ such that $\tilde{g}(y_0) = y_0$ and $\tilde{g}(x) > x$ for all $x \in (0, y_0)$.
- Fix an arbitrary $x_0 \in (0, y_0)$, and let $x_n := \tilde{g}^{-n}(x_0)$.
- Fix elements φ₀, φ₁ ∈ H₊ ([x₁, x₀]) that generate a dense subgroup of H₊ ([x₁, x₀]).
- Let \tilde{f} have the following properties:

- Fix $\alpha > 0$ small
- Let \tilde{g} have the following properties:
 - \widetilde{g} agrees with g on $[\alpha,1]$
 - There is $y_0 \in (0, \alpha)$ such that $\tilde{g}(y_0) = y_0$ and $\tilde{g}(x) > x$ for all $x \in (0, y_0)$.
- Fix an arbitrary $x_0 \in (0, y_0)$, and let $x_n := \tilde{g}^{-n}(x_0)$.
- Fix elements φ₀, φ₁ ∈ H₊ ([x₁, x₀]) that generate a dense subgroup of H₊ ([x₁, x₀]).
- Let \tilde{f} have the following properties:
 - \tilde{f} agrees with f on [lpha,1]
 - \tilde{f} shares no fixed point with \tilde{g} on (y_0, α)
 - $\tilde{f}(x) > x$ for all $x \in (x_0, y_0]$
 - On $[x_{n+1}, x_n]$, \tilde{f} agrees with $\tilde{g}^{-n} \circ \phi_0 \circ \tilde{g}^n$ for *n* even and $\tilde{g}^{-n} \circ \phi_1 \circ \tilde{g}^n$ for *n* odd.

Why this works

Why this works

• For any *n*, $\tilde{f}|_{[x_{n+1},x_n]}$ and $\tilde{g}\tilde{f}\tilde{g}^{-1}|_{[x_{n+1},x_n]}$ generate a dense subgroup of $H_+([x_{n+1},x_n])$.

- For any *n*, $\tilde{f}|_{[x_{n+1},x_n]}$ and $\tilde{g}\tilde{f}\tilde{g}^{-1}|_{[x_{n+1},x_n]}$ generate a dense subgroup of $H_+([x_{n+1},x_n])$.
- *f* and *g* do not share any fixed points. Thus, for any x > 0 and y < 1, there is h∈ Γ such that h(x) > y.

- For any *n*, $\tilde{f}|_{[x_{n+1},x_n]}$ and $\tilde{g}\tilde{f}\tilde{g}^{-1}|_{[x_{n+1},x_n]}$ generate a dense subgroup of $H_+([x_{n+1},x_n])$.
- *f̃* and *g̃* do not share any fixed points. Thus, for any x > 0 and y < 1, there is h ∈ Γ such that h(x) > y.
- Using this, one shows that for any $\lambda > 0$, there is $\Phi \in \Gamma$ and some $[a, b] \subseteq I$ such that $a < \lambda < 1 \lambda < b$, and $\Phi \tilde{f} \Phi^{-1} |_{[a,b]}$ and $\Phi \tilde{g} \tilde{f} \tilde{g}^{-1} \Phi^{-1}$ generate a dense subgroup of $H_+([a, b])$.

• Need to show $F := \{(f,g) : Fix(f) \cap Fix(g) = \{0,1\}\}$ dense in $(H_+^{AC})^2$.

- Need to show $F := \{(f,g) : Fix(f) \cap Fix(g) = \{0,1\}\}$ dense in $(H_+^{AC})^2$.
- Need to choose α even smaller to guarantee $d_{AC}(g, \tilde{g}) < \epsilon$.

- Need to show $F := \{(f,g) : Fix(f) \cap Fix(g) = \{0,1\}\}$ dense in $(H_+^{AC})^2$.
- Need to choose α even smaller to guarantee $d_{AC}(g, \tilde{g}) < \epsilon$.
- Need more ϕ_i 's to generate a dense subgroup of $H_+^{AC}([x_1, x_0])$.

- Need to show $F := \{(f,g) : Fix(f) \cap Fix(g) = \{0,1\}\}$ dense in $(H_+^{AC})^2$.
- Need to choose α even smaller to guarantee $d_{AC}(g, \tilde{g}) < \epsilon$.
- Need more ϕ_i 's to generate a dense subgroup of $H_+^{AC}([x_1, x_0])$.
- Need to show why a dense subgroup of $H_{+}^{AC}([a, b])$ can approximate $H_{+}^{AC}(I)$.