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Topological generating sets

Definition

Let G be a Polish group, and let 1 ≤ n ≤ ℵ0.

Ωn :=
{

(gi )i<n ∈ Gn : 〈gi : i < n〉 is dense in G
}
.

We say G is topologically n-generated (resp. generically
n-generated) if Ωn is non-empty (resp. comeagre).

Definition

The topological rank (resp. generic rank) of G , denoted by
trk (G ) (resp. grk (G )), is the least n for which G is topologically
n-generated (resp. generically n-generated).
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Topological generating sets - remarks

• Every Polish group is generically ℵ0-generated. (By
separability.)

• Ωn is a Gδ set in Gn. Thus, G is generically n-generated iff
Ωn is dense in Gn.

• If φ : G1 → G2 is a continuous group homomorphism with
dense image, then trk (G2) ≤ trk (G1).
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Topological generating sets - examples

Example

Topologically 1-generated groups are also called monothetic.
(R/Z)n has this property for all n, as does the group L0 (T). These
groups are also generically monothetic, i.e. generically
1-generated.

Example

Rn is generically (n + 1)-generated.

Example (Kechris–Rosendal, 2007)

S∞ is topologically 2-generated, as are many other automorphism
groups of countable structures. However, a non-archimedean group
can never be generically n-generated for any finite n.
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Topological generating sets - examples

Throughout today, I := [0, 1].

Example

H+ (I ) is topologically 2-generated — for example, it famously
contains Thompson’s group F as a dense subgroup.

Example (Akhmedov–Cohen, 2019)

H+ (I ) is generically 2-generated.

Example (Akhmedov–Cohen, 2019)

D1
+ (I ) is topologically 10-generated. (The actual value of trk

(
D1
+

)
is likely lower, but it must be at least 3.)
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Absolute continuity

All measure-theoretic notions are taken with respect to the usual
Lebesgue measure λ.

Recall the following from a first course in
measure theory:

Definition

A function f : I → R is absolutely continuous if for every ε > 0,
there is a δ > 0 such that for every finite, pairwise disjoint
collection ((ai , bi ))i<n of open intervals in I , we have∑

i<n

bi − ai < δ =⇒
∑
i<n

|f (bi )− f (ai )| < ε.

Every Lipschitz continuous function is absolutely continuous, and
every absolutely continuous function has bounded variation.
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Absolute continuity

Figure: The Cantor staircase is the canonical example of a non-abs cts
function.



Absolute continuity

Theorem (Fundamental Theorem of Calculus for abs cts functions)

For a function f : I → R, the following are equivalent:

(i) f is absolutely continuous;

(ii) f is differentiable almost everywhere, f ′ ∈ L1, and we have
f (x) = f (0) +

∫ x
0 f ′ (t) dt for all x ∈ I ;

(iii) There exists a map g ∈ L1 such that f (x) = f (0)+
∫ x
0 g (t) dt

for all x ∈ I .
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Absolutely continuous homeomorphisms

Definition

The group HAC
+ is the subgroup of H+ given by:

HAC
+ :=

{
f ∈ H+ : f and f −1 are absolutely continuous

}
.

Equip HAC
+ with the metric dAC (f , g) := ‖f ′ − g ′‖1. Thus, the

map HAC
+ 3 f 7→ f ′ ∈ L1 is an isometry.

Theorem (Solecki, 1995)

The metric dAC induces a Polish topology on HAC
+ , which is finer

than the one inherited from H+.
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Aside: subgroups of H+



H+ (I )

Theorem (Akhmedov–Cohen, 2019)

H+ (I ) is generically 2-generated.

Suffices to show Ω2 is dense. Fix f , g ∈ H+, and ε > 0. We will

build f̃ , g̃ ∈ H+ such that d
(
f , f̃
)
< ε, d (g , g̃) < ε, and

Γ :=
〈
f̃ , g̃
〉

is dense in H+.

The set {(f , g) : Fix (f ) ∩ Fix (g) = {0, 1}} is dense, so without
loss of generality, we assume f and g do not share any fixed points
in (0, 1).
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Constructing f̃ and g̃

Sketch of the construction of f̃ and g̃ :

• Fix α > 0 small

• Let g̃ have the following properties:

- g̃ agrees with g on [α, 1]
- There is y0 ∈ (0, α) such that g̃ (y0) = y0 and g̃ (x) > x

for all x ∈ (0, y0).

• Fix an arbitrary x0 ∈ (0, y0), and let xn := g̃−n (x0).

• Fix elements φ0, φ1 ∈ H+ ([x1, x0]) that generate a dense
subgroup of H+ ([x1, x0]).

• Let f̃ have the following properties:

- f̃ agrees with f on [α, 1]
- f̃ shares no fixed point with g̃ on (y0, α)
- f̃ (x) > x for all x ∈ (x0, y0]
- On [xn+1, xn], f̃ agrees with g̃−n ◦ φ0 ◦ g̃n for n even and
g̃−n ◦ φ1 ◦ g̃n for n odd.
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Why this works

• For any n, f̃ �[xn+1,xn] and g̃ f̃ g̃−1�[xn+1,xn] generate a dense
subgroup of H+ ([xn+1, xn]).

• f̃ and g̃ do not share any fixed points. Thus, for any x > 0
and y < 1, there is h ∈ Γ such that h (x) > y .

• Using this, one shows that for any λ > 0, there is Φ ∈ Γ and
some [a, b] ⊆ I such that a < λ < 1− λ < b, and Φf̃ Φ−1�[a,b]
and Φg̃ f̃ g̃−1Φ−1 generate a dense subgroup of H+ ([a, b]).
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some [a, b] ⊆ I such that a < λ < 1− λ < b, and Φf̃ Φ−1�[a,b]
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The HAC
+ case

Where does this proof need more work for the abs cts case?

• Need to show F := {(f , g) : Fix (f ) ∩ Fix (g) = {0, 1}} dense

in
(
HAC
+

)2
.

• Need to choose α even smaller to guarantee dAC (g , g̃) < ε.

• Need more φi ’s to generate a dense subgroup of
HAC
+ ([x1, x0]).

• Need to show why a dense subgroup of HAC
+ ([a, b]) can

approximate HAC
+ (I ).
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